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Abstract
We study here the self-similar shape invariant potential (SSSIP) proposed by
Barclay et al (1993 Phys. Rev. A 48 2786) in the context of supersymmetric
quantum mechanics. The superpotential of SSSIP, W(x), obeys an ordinary
differential equation involving W and its derivative at two different spatial
points, and hence cannot be solved with standard numerical methods. In
addition, Taylor series expansion of W(x) about x = 0 also diverges at large x.
To provide an effective numerical scheme to construct the superpotential, we
use the Padé approximation to express W(x) as a fraction of polynomials in x.
We find that the homogeneous two-point Padé approximant can indeed yield
accurate values of the superpotential for all x.

PACS numbers: 03.65.Ge, 03.65.−w, 02.30.Mv, 02.30.Zz, 05.45.Yv

1. Introduction

The study of supersymmetric quantum mechanics (SQM) bloomed in the early 1980s as a
fruitful byproduct of the investigation of the breakdown of supersymmetry (SUSY) in quantum
field theory (see, e.g., [1–6] and references therein). The basic idea of SQM is simple
and analogous to that of the factorization method proposed in the mid-twentieth century
[7–9]. However, SQM has been shown to be a systematic method to understand why certain
potentials, termed as shape invariant potentials (SIPs), are exactly solvable, and to generate
new exactly solvable potentials [10–12]. More surprisingly, the theory of SQM is also adapted
to descriptions of other physical phenomena such as inverse scattering and solitons [13–18].

The major concern of the present paper is a special kind of SIP, namely self-similar
SIP (SSSIP). SSSIP was first considered in the context of SQM by Barclay et al [11]. The
physical significance of SSSIPs is that they are reflectionless potentials supporting an infinite
number of bound states. It is well known that reflectionless potentials of the Schrödinger
equation can lead to multi-soliton solutions of the Korteweg-de Vries (KdV) equation (see,
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e.g., [13–18]). In particular, the number of bound states of the potential correspond to the
number of solitons. Like other SIPs, the spectrum of SSSIPs can be found exactly. However,
to our knowledge, there is no closed form analytic solution to its superpotential W(x), which
obeys an ordinary differential equation involving W and its derivative at two different spatial
points. Such a finite-difference ordinary differential equation is not amenable to standard
numerical methods in the absence of other theoretical input. Instead, Barclay et al have
developed a power series about x = 0 to supplement the differential equation and succeeded
in obtaining the superpotential and the associated potential as well [11]. However, they have
also shown that the power series diverges for x greater than a certain value.

The aim of our study here is to obtain an approximate analytic expansion for the
superpotential of SSSIPs, which can yield accurate numerical results for all values of x.
The tool we used is the standard Padé approximation (see, e.g., [19]). First of all, we construct
a one-point homogeneous Padé approximant from the power series about x = 0. We find that
this one-point homogeneous Padé approximant can readily reproduce the superpotential for a
large range of x, thus extending the validity of the original power series about x = 0 beyond
its radius of convergence. However, the one-point Padé approximant fails to yield the correct
asymptotic value of the superpotential at large x. We therefore further make use the two-point
homogeneous Padé approximant, which is able to capture the essence of the superpotential at
both small and large x, to approximate the superpotential. We find that the result obtained from
the two-point homogeneous Padé approximant is in fact accurate everywhere. In addition, we
are also able to fix an unknown constant in the power series expansion of W(x) developed
about the point x = ∞ [11]. The Padé approximant developed here for the superpotential of
SSSIPs can be used to generate the associated potential and in turn the solution of the KdV
equation which describes the evolution of an infinite number of solitons.

The structure of this paper is as follows. To make our paper a self-contained one, we
briefly review the basic idea of SQM and SIPs, and introduce the property of SSSIPs in
sections 2 and 3, respectively. We then apply the one-point Padé approximant to approximate
the superpotential and discuss the effect of the center of the approximant on the accuracy of
the approximation in section 4. In section 5 we extend our study using the two-point Padé
approximant and show that it outperforms the one-point Padé approximant. We end our paper
with a discussion in section 6.

2. SQM and SIPs

As in the factorization method [7–9], the fundamental principle of SQM is to express a given
Hamiltonian Ĥ 1 (in units of 2m = h̄ = 1) as the product of two operators Â and Â†:

Ĥ 1 ≡ − d2

dx2
+ V1(x) = Â†Â, (2.1)

where the two operators Â and Â† are expressible in terms of a superpotential W(x):

Â = d

dx
+ W(x), (2.2)

Â† = − d

dx
+ W(x). (2.3)

Following directly from (2.1), it is obvious that W(x) satisfies the equation

V1(x) = W 2(x) − W ′(x). (2.4)

Hereafter, we use a prime to denote differentiation with respect to x.
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The supersymmetric partner Hamiltonian of Ĥ 1, Ĥ 2, is defined by

Ĥ 2 ≡ − d2

dx2
+ V2(x) = ÂÂ†, (2.5)

where

V2(x) = W 2(x) + W ′(x). (2.6)

The energy spectra of these two supersymmetric partner Hamiltonians, denoted as E
(i)
0 <

E
(i)
1 < E

(i)
2 < · · · (i = 1, 2 for the spectra of Ĥ 1 and Ĥ 2, respectively), are closely related to

each other. For unbroken SUSY where E
(1)
0 = 0 and Âψ

(1)
0 = 0, with ψ

(1)
0 being the ground

state wavefunction of Ĥ 1, the two spectra are almost identical in the sense that

E
(1)
n+1 = E(2)

n . (2.7)

Furthermore, for SIPs satisfying the shape invariant relation:

V2(x; a1) = V1(x; a2) + R(a1), (2.8)

where a1 and a2 = f (a1) are free parameters characterizing the partner potentials V1 and V2,
respectively, f and R are functions of a1, the entire spectrum of Ĥ1 can be readily generated:

E
(1)
0 = 0, E(1)

n =
n∑

k=1

R(ak) for n � 1, (2.9)

with ak = f k−1(a1). More interestingly, many exactly solvable potentials, including the three-
dimensional oscillator potential, the Coulomb potential, the Morse potential and the Eckart
potential, are SIPs (see, e.g., [4, 6, 20]). SIPs can be categorized according to the nature of
the function f (a1) (see, e.g., [6]). If f (a1) = a1 + α, where α is an arbitrary constant, the
family of SIPs are said to be related by translation, termed as translational SIPs (TSIPs). On
the other hand, if

f (a1) = qa1, (2.10)

with q being a scaling parameter, such SIPs are said to be related by scaling and called scaling
SIPs (SSIPs) [11, 12]. Another kind of SIP discovered more recently is the cyclic shape
invariant potential (CSIP) [21–23]. For CSIPs, the parameters a1 and a2 are related by a cyclic
function f of period-p, such that

ap+1 = f p(a1) = a1, (2.11)

with p being a positive integer. The superpotentials of all TSIPs can be expressed in closed
analytic forms, whereas analytic forms of the superpotentials of SSIPs and CSIPs (except for
the period-2 CSIP [21]) are not available to our knowledge.

3. Self-similar potentials

The concept of self-similar potentials (SSP) was first discussed by Shabat [24] and Spiridonov
[25] in the context of inverse scattering and q-deformation of the single-soliton solution of the
Rosen–Morse potential. Superpotentials are termed as self-similar if

Wi+1(x) = pWi(px), (3.1)

where i = 1, 2, . . . , 0 < p < 1 is a deformation parameter, and Wi(x) is the ith superpotential
in a sequence of SIPs. Subsequent to the investigation of Shabat [24] and Spiridonov [25],
Barclay et al discovered that SSPs are in fact a special kind of SSIP [11]. To reveal relevant
properties of SSPs, we sketch here the argument of Barclay et al [11].
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First of all, the superpotential W(x, a1) ≡ W1(x) and R(a1) of a SSIP in (2.8) are
expanded in terms of series of the parameter a1:

W(x, a1) =
∞∑

j=0

gj (x)a
j

1 , (3.2)

R(a1) =
∞∑

j=0

Rja
j

1 , (3.3)

where gj (x) are the functions of x only, and Rj are constants. Using these expansions, together
with (2.4), (2.6), (2.8) and (2.10), it is straightforward to show that

2g′
0(x) = R0, (3.4)

g′
1(x) + 2d1g0(x)g1(x) = r1d1, (3.5)

g′
n(x) + 2dng0(x)gn(x) = rndn − dn

n−1∑
j=1

gj (x)gn−j (x), n = 2, 3, . . . , (3.6)

where

rn = Rn

(1 − qn)
, dn = (1 − qn)

(1 + qn)
(3.7)

for n = 1, 2, 3, . . . . In the simplest case with g0 = 0 and R0 = 0, equations (3.4)–(3.6) can
be integrated in succession, yielding

g1(x) = r1d1x, (3.8)

gn(x) = dn

∫ (
rn −

n−1∑
j=1

gj (x)gn−j (x)

)
dx, (3.9)

and the superpotential W can be readily obtained by putting these results into (3.2).
Barclay et al [11] further considered a special kind of SSIP satisfying the condition

Rn = 0 (3.10)

for all n � 2. The series expansion of the superpotential is particularly simple:

W(x, a1) = √
a1

∞∑
i=1

βi(
√

a1x)2i−1, (3.11)

where β1 = d1r1 = R1/(1 + q), and for n = 2, 3, . . .

βn = − dn

2n − 1

n−1∑
j=1

βjβn−j . (3.12)

Such a kind of superpotential is characterized by the function F(x) defined by

F(x) = W(x, a1 = 1) =
∞∑
i=1

βix
2i−1, (3.13)

and hence

W(x, a1) = √
a1F(

√
a1x). (3.14)
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Figure 1. The exact superpotential W(x) of SSSIPs is plotted against x for different values of
the scaling constant q, namely, q = 1.0 (solid line with filled squares), 0.8 (solid line with filled
circles), 0.6 (solid line with empty squares), 0.4 (short dashed line), 0.2 (solid line) and 0.0 (long
dashed line), respectively.

It is easy to see that this particular kind of SSIP, which satisfies Wi+1(x) = W1(x, qia1) and
(3.14), obeys (3.1) as well, and is indeed self-similar with the deformation parameter given
by p = √

q. Therefore, we term it as self-similar SIP (SSSIP) in the present paper.
According to (3.11) and (3.12), the superpotential of a SSSIP can be expanded as a power

series in x:

W(x) = C1

1 + q
x − 1

3

(
C1

1 + q

)2 1 − q2

1 + q2
x3 + · · · , (3.15)

with C1 = R1a1, and hereafter its dependence on a1 is suppressed. Higher-order expansion
can be obtained in a systematic way. However, the radius of convergence Rc of the series in
(3.15) is shown to be finite, satisfying the following inequalities [11]:

π

2
�

√
C1Rc � π

2

√
1 + q

1 − q
. (3.16)

Therefore, it is impossible to generate the superpotential W(x) with (3.15) for x greater than
Rc. To solve this W(x) for all x ∈ [0,∞), Barclay et al have suggested the following
recipe [11]. First, one can use the shape invariant condition in (2.8) to find a finite-difference
differential equation:

W 2(x) + W ′(x) = qW 2(
√

qx) − √
q

dW(
√

qx)

dx
+ C1. (3.17)

Second, one can supplement this equation with the expansion (3.15), which can yield accurate
result for sufficiently small x. With the input of the value of W(

√
qx) generated from (3.15)

at a small
√

qx, equation (3.17) can be solved for a larger domain of x. Hence, by repeatedly
substituting the value of W(x) obtained from the previous round of calculation into the rhs of
(3.17), W(x) can be evaluated for all x. Figure 1 shows the superpotential obtained through
this numerical scheme for SSSIPs with q = 0, 0.2, 0.4, 0.6, 0.8, 1.0. It is interesting to note
that SSSIPs with q = 1 and q = 0, respectively, correspond to the one-dimensional simple
harmonic potential (W(x) ∝ x) and the Rosen–Morse potential (W(x) ∝ tanh

√
C1x) [11],

and these two limiting cases of the superpotential are clearly shown in figure 1.
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The asymptotic behavior of W(x) as x → ∞ can also be derived from the finite-difference
differential equation in (3.17), which can be recast into the following form:

W 2
∞(y) − y2 dW∞(y)

dy
= qW 2

∞(y/
√

q) +
√

qy2 dW∞(y/
√

q)

dy
+ C1, (3.18)

where W∞(y) = W(1/y) [11]. By expressing the superpotential W∞(y) in a power series
of y,

W∞(y) =
∞∑

j=0

αjy
j , (3.19)

substituting this series into (3.18), and comparing equal powers of y, the series about y = 0
(i.e. x → ∞) can be obtained, with the coefficients αj given by

α0 =
√

C1

1 − q
, (3.20)

α1 = 0, (3.21)

αj = −(j − 1)

(
1 +

√
qj−2

1 −
√

qj−2

)
αj−1

2α0
− 1

2α0

j−2∑
k=2

αkαj−k, for j � 3. (3.22)

It is worthy to remark that the coefficient α2 cannot be determined in this way because it
depends on the small-x behavior of the superpotential [11]. However, we will show later in
this paper that α2 can be evaluated with the two-point Padé approximation, which can capture
the essence of the superpotential at both large and small x.

On the other hand, similar to other SIPs, the exact energies of SSSIPs can be obtained
analytically from (2.9), (3.3) and (3.10):

En = C1
1 − qn

1 − q
, n = 0, 1, 2, . . . . (3.23)

It is interesting to note that for SSSIPs

lim
n→∞ En ≡ E∞ = C1

1 − q
= lim

x→∞ W 2(x). (3.24)

The result is physically plausible and imposes a useful constraint on the asymptotic behavior
of W(x).

4. One-point Padé approximation

As discussed above, the series expansion of W(x) in (3.15) diverges for |x| > Rc and is not
suitable for evaluation of W at large |x|. In addition, by virtue of (3.24), the superpotential
W(x) is expected to converge to a finite limit E

1/2
∞ as x → ∞. In order to remedy the

divergence of the series in (3.15) and to ensure correct asymptotic behavior of W(x) as well,
we propose here to use the symmetric (or homogeneous) Padé approximation to construct the
superpotential.

Generally speaking, the [N/M] Padé approximant of a power series
∑

akx
k is a rational

function of the form (see, e.g., [19])

PN
M(x) =

∑N
n=0 Anx

n∑M
m=0 Bmxm

. (4.1)
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Figure 2. The superpotential W(x) of SSSIP with q = 0.6 obtained from the exact numerical
method (circles), power series expansion about x = 0 (dotted line, 60 leading terms were included
in the sum), [20/20] one-point Padé approximant about x = 0 (short dashed line) and [10/10]
two-point Padé approximant about x = 0 and x = ∞ (solid line) are plotted against x. Besides,
the horizontal long dashed line shows the asymptotic value of W(x) at x = ∞.

Here, An (n = 0, 1, . . . , N) and Bm (m = 0, 1, . . . ,M) are constants to be determined from
the coefficients of the power series by requiring that( ∞∑

k=0

akx
k

)(
M∑

m=0

Bmxm

)
≈

N∑
n=0

Anx
n. (4.2)

The above equality holds approximately in the sense that the coefficients of the leading
(M + N + 1) terms on the lhs match the corresponding ones on the rhs. Without loss of
generality, the choice B0 = 1 is always assumed.

To generate an appropriate Padé approximant for W(x), which approaches a constant value
as x → ∞, we consider a symmetric (or homogeneous) Padé approximant with M = N :

TN(x) ≡ PN
N (x) =

∑N
k=0 Akx

k∑N
k=0 Bkxk

. (4.3)

Obviously, such a homogeneous Padé approximant tends to a constant AN/BN in the large-x
limit. This point provides a strong motivation for us to construct [N/N ] Padé approximants
for W(x). In figures 2 and 3 (4 and 5), we show the superpotential W(x) (the potential V1(x))
constructed from the homogeneous Padé approximant about x = 0 (the short dashed line)
for SSSIPs with q = 0.6, 0.2 and a comparison is made with the results obtained from the
exact numerical integration method mentioned above (the circles). As shown in these figures,
the Padé approximant shows good agreement with the exact numerical result for small x.
More interestingly, unlike the Taylor series expansion of W(x) about x = 0 (denoted by the
dotted line in these figures), which diverges for x greater than Rc , the homogeneous Padé
approximant is well behaved even if |x| > Rc and gradually approaches the asymptotic value
of W(x),E

1/2
∞ (the horizontal long dashed line), at intermediate values of x. However, the

Padé approximant about x = 0 obviously fails to predict the correct asymptotic value of W(x)

for very large values of |x| (see figures 2 and 3), which is a direct consequence of the fact that
in general AN/BN 	= E

1/2
∞ .
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Figure 3. The superpotential W(x) of SSSIP with q = 0.2 obtained from the exact numerical
method (circles), power series expansion about x = 0 (dotted line, 60 leading terms were included
in the sum), [22/22] one-point Padé approximant about x = 0 (short dashed line) and [10/10]
two-point Padé approximant about x = 0 and x = ∞ (solid line) are plotted against x. Besides,
the horizontal long dashed line shows the asymptotic value of W(x) at x = ∞.
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Figure 4. The potential V1(x) of SSSIP with q = 0.6 is plotted against x. The value of V1(x)

is evaluated with the superpotential W(x) obtained from the exact numerical method (circles),
power series expansion about x = 0 (dotted line, 60 leading terms were included in the sum),
[20/20] one-point Padé approximant about x = 0 (short dashed line) and [10/10] two-point Padé
approximant about x = 0 and x = ∞ (solid line), respectively. Besides, the horizontal long dashed
line shows the asymptotic value of V1(x) at x = ∞.

It is worthy to remark that the discrepancy between the Padé approximant and the exact
result in the large-x regime cannot be eliminated by simply increasing the order (i.e. the value
of N) of the approximant. In fact, the approximant might even demonstrate erratic behavior
(e.g., emergence of unexpected poles on or near the real x-axis) when N is large (see figure 6).
Physically speaking, the Padé approximant introduced above is generated from the Taylor
series expansion of W(x) about x = 0, which does not contain enough information about the
large-x behavior of W(x). This is the culprit giving rise to the discrepancy.

In order to capture more information about the large-x behavior of W(x), we construct
another homogenous Padé approximant with a center x0 	= 0. Similar to the method mentioned
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Figure 5. The potential V1(x) of SSSIP with q = 0.2 is plotted against x. The value of V1(x)

is evaluated with the superpotential W(x) obtained from the exact numerical method (circles),
power series expansion about x = 0 (dotted line, 60 leading terms were included in the sum),
[22/22] one-point Padé approximant about x = 0 (short dashed line) and [10/10] two-point Padé
approximant about x = 0 and x = ∞ (solid line), respectively. Besides, the horizontal long dashed
line shows the asymptotic value of V1(x) at x = ∞.
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Figure 6. The superpotential W(x) of SSSIP with q = 0.6 obtained from the [22/22] one-point
Padé approximant about x = 0 (short dashed line) and [10/10] two-point Padé approximant about
x = 0 and x = ∞ (solid line) are plotted against x, respectively. The horizontal long dashed
line shows the asymptotic value of W(x) at x = ∞. It is clearly shown that the one-point Padé
approximant about x = 0 obviously fails to predict the correct asymptotic value of W(x) for very
large values of x. Besides, there are two singular points in the one-point Padé approximant around
x 
 20 where the denominator vanishes.

above, a fraction of polynomials in x − x0 is used to approximate the Taylor series expansion
of W(x) developed about x = x0, namely,

TN(x) =
∑N

k=0 Ak(x − x0)
k∑N

k=0 Bk(x − x0)k

≈ W(x0) +
dW(x = x0)

dx
(x − x0) +

1

2!

d2W(x = x0)

dx2
(x − x0)

2 + · · · . (4.4)
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Figure 7. The value of W(x = 40) for a SSSIP with q = 0.6 obtained from the [10/10] one-point
Padé approximant centered at x0 is plotted against x0.
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Figure 8. W(x) for a SSSIP with q = 0.6 obtained from the [10/10] one-point Padé approximant
centered at x0 = 0.0 (dot-dashed line), 0.5 (dotted line), 1.0 (short dashed line) and 2.0 (solid line)
are plotted against x. The horizontal long dashed line shows the asymptotic value of W(x) in the
large-x limit. For comparison, exact values of W(x) (the circles) are also shown here.

The Taylor series of W(x) in the above equation can be derived from (3.15), and again the
coefficients Ak and Bk (k = 0, 1, . . . , N) can be determined from an equation analogous to
(4.2). Since the superpotential is finite as x → ∞, a homogeneous Padé approximant is
adopted as in the previous case.

For the moment the choice of x0 is completely free and there is no a priori argument to
uniquely define it. On the other hand, as the superpotential W(x) itself should be independent
of the value of x0, it is essential to choose an x0 to respect this point. In figure 7 we show the
values of the superpotential constructed from Padé approximants with different centers and
evaluated at a point x = 40. The value of W varies greatly for approximants with x0 close to
zero; however, it becomes more stable if x0 � 1. We then expect that the choice with x0 � 1
is better than that with x0 ≈ 0. Such a least sensitivity criterion indeed provides a useful
guideline for the choice of x0. Figure 8 displays the numerical results of W(x) constructed

10
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from Padé approximants with different centers. It is obvious that the approximant with x0 = 2
is much better than the approximant with x0 = 0. The former choice yields accurate results
even in the large-x regime, while the latter fails to do so in the same range.

5. Two-point Padé approximation

In order to construct a Padé approximant that can capture the essence of the superpotential
in both the small and the large-x limits, represented respectively by the series in (3.15) and
(3.19), we will use the two-point Padé approximation to achieve our purpose in the following
discussion.

First of all, for the purpose of clarity, we let

W(x) = P0 + P1x + P2x
2 + · · · ≡ P(x), (5.1)

W∞(y) = Q0 + Q1y + Q2y
2 + · · · ≡ Q(y), (5.2)

where, as defined previously, y = 1/x. Second, we consider a [N,N ] homogeneous Padé
approximant TN(x):

TN(x) = A0 + A1x + · · · + ANxN

B0 + B1x + · · · + BNxN
, (5.3)

with the 2N + 1 coefficients Ak and Bk to be determined as follows. When equating TN(x) to
P(x) around x = 0, we get the approximate equation

(A0 + A1x + · · · + ANxN) ≈ (B0 + B1x + · · · + BNxN)P (x). (5.4)

By comparing the coefficients of the leading N + 1 terms in each side, we deduce a matrix
equation relating the coefficients Ak and Bk:⎛

⎜⎜⎜⎝
A0

A1

...

AN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P0 0 0 0
P1 P0 0 0
...

. . . 0
PN · · · · · · P0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

B0

B1

...

BN

⎞
⎟⎟⎟⎠ , (5.5)

which can be accordingly written as �A = P · �B in obvious matrix notations.
On the other hand, substituting y = 1/x into (5.3) leads to a new fraction in the variable

y:

T̃N (y) ≡ TN(1/x) = A0y
N + A1y

N−1 + · · · + AN

B0yN + B1yN−1 + · · · + BN

. (5.6)

T̃N (y) is expected to be close to Q(y). Therefore, we have

(A0y
N + A1y

N−1 + · · · + AN) ≈ (B0y
N + B1y

N−1 + · · · + BN)Q(y). (5.7)

Again by comparing the coefficients of the leading N + 1 terms in each side of the above
approximate equality, we find a matrix equation in the coefficients Ak and Bk:⎛

⎜⎜⎜⎝
A0

A1

...

AN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Q0 Q1 · · · QN

0
. . .

...

0 0 Q0 Q1

0 0 0 Q0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

B0

B1

...

BN

⎞
⎟⎟⎟⎠ , (5.8)

which is compactly written as �A = Q · �B.
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Figure 9. The determinant of the matrix P − Q in the lhs of (5.10), which is normalized to
unity at α2 = −13, is plotted against the parameter α2 for a SSSIP with q = 0.6. [8/8] (dotted
line), [10/10] (dashed line), [12/12] (solid line) and [14/14] (dot-dashed line) two-point Padé
approximants are considered.

There are 2N + 2 equations in (5.5) and (5.8). However, B0 is equal to unity
by convention. As a result, there are only 2N + 1 undetermined coefficients, namely,
A0, A1, . . . , AN,B1, B2, . . . , BN . At first sight, it seems that (5.5) and (5.8) together form an
over-determined system. In fact, by comparing (5.5) with (5.8), we get⎛

⎜⎜⎜⎜⎝
P0 − Q0 −Q1 · · · −QN

P1
. . .

...

... P0 − Q0 −Q1

PN · · · P1 P0 − Q0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

B0

B1

...

BN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎟⎠ = 0, (5.9)

or equivalently (P − Q) · �B = 0. The condition for the existence of nonzero solution to (5.9)
is obviously

det(P − Q) = 0. (5.10)

As mentioned in the derivation of the series expansion of W∞(y), the coefficient α2

(i.e. Q2 in the matrix Q) cannot be determined solely from the large-x behavior of W(x).
Therefore, equation (5.10) indeed provides a means to determine α2, which is an extra bonus
of the two-point Padé approximation introduced here. On the other hand, equation (5.10) is a
nonlinear algebraic equation of α2 and hence multiple solutions of α2 (real or complex) can
be found. To select an appropriate solution of α2, we impose three criteria for determining
α2. (i) Since the superpotential is real-valued, α2 must also be real. (ii) The coefficient
α2 depends on the asymptotic behavior of the superpotential and should be independent of
the parameters artificially introduced in the Padé approximation. Therefore, the value of α2

should be insensitive to the parameter N used in the approximation. However, most real roots
of (5.10) are found to be sensitive to the value of N, which are not acceptable. Thus, one can
make use of this criterion to narrow down the choices of α2. (iii) To minimize the effect of
α2 on the result, the best value of α2 should affect the determinant of P − Q the least. As an
example, in figure 9 we plot det(P − Q) against the parameter α2 for a SSSIP with q = 0.6.
Taking the criteria mentioned above into consideration, one can easily see that the optimal
value of α2 is about −12.
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Figure 10. The errors in various Padé approximants of W(x) are shown against x for the case
with q = 0.6. The approximants considered here are, respectively, [10/10] (triangles) and [16/16]
(solid dots) one-point Padé approximants about the center x0 = 2.0, [6/6] (the solid line), [8/8]
(empty circles) and [10/10] (empty squares) two-point Padé approximants. In this figure, the
errors of [8/8] and [10/10] two-point Padé approximants are scaled up by ten times.

After fixing the coefficient α2, the two-point Padé approximant in (5.3) can be constructed
by rewriting the matrix equation in (5.9) as

B0

⎛
⎜⎜⎜⎝

P1

P2

...

PN

⎞
⎟⎟⎟⎠ +

⎛
⎜⎝

P0 − Q0 · · · −QN−1

...
...

PN−1 · · · P0 − Q0

⎞
⎟⎠

⎛
⎜⎜⎜⎝

B1

B2

...

BN

⎞
⎟⎟⎟⎠ = 0. (5.11)

As B0 = 1 by convention, other coefficients Bk (1 � k � N) can be found:⎛
⎜⎜⎜⎝

B1

B2

...

BN

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎝

P0 − Q0 · · · −QN−1

...
...

PN−1 · · · P0 − Q0

⎞
⎟⎠

−1
⎛
⎜⎜⎜⎝

P1

P2

...

PN

⎞
⎟⎟⎟⎠ . (5.12)

Once �B is obtained, �A can be calculated from (5.5) or (5.8). Hence the two-point Padé
approximant can be obtained.

In figures 2–5, we show the numerical results of two-point Padé approximants for the
cases with q = 0.6, 0.2. It is clearly demonstrated in these figures that the two-point Padé
approximant (the solid line) can yield accurate values of the superpotential and the potential
for x in all ranges, in contrast to the one-point Padé approximant about x = 0 that deviates
from the asymptotic value of W(x) at large x. Besides, as shown in figure 6, the two-point
Padé approximant is free of singularity. In figure 10, we compare the accuracies of the
one-point and two-point Padé approximants of different orders. It is interesting to note that
the error in two-point Padé approximants decreases with N rapidly and is particularly small
for small or large values of x. (In figure 10, the errors of [8/8] and [10/10] two-point Padé
approximants have been scaled up by ten times in order to make them more discernible in the
figure.) Despite the fact that the one-point Padé approximant with an optimal choice of x0

(x0 = 2 in figure 10) can also yield accurate results for a large range of x, its error grows and is
much greater than that of the two-point Padé approximant as x increases. Hence, we conclude

13



J. Phys. A: Math. Theor. 41 (2008) 025206 H K Lau and P T Leung

that the two-point Padé approximant provides an effective and accurate means to evaluate the
superpotential.

6. Discussion and conclusion

We have demonstrated here the feasibility of the Padé approximation in evaluating the
superpotential and the potential of SSSIPs. As is clearly shown in figures 2–5, the one-
point Padé approximant generated from the series expansion of the superpotential at x = 0
can readily reproduce accurate numerical results for both the superpotential and the potential
at small and intermediate x. In fact, its validity even goes beyond the radius of convergence
of the original series. Furthermore, by judiciously choosing the center of expansion x0, one
can extend the validity of the one-point Padé approximant to a much larger range of x and
eliminate its singular behavior as well (see figure 8).

Owing to the fact that the one-point Padé approximant can only sample the variation of the
superpotential around the center of expansion x0, the error of the one-point Padé approximant
usually grows gradually in the large-x regime (see figure 10). Therefore, we propose to use the
two-point Padé approximant, which can include the information about the superpotential in
both small and large-x ranges, to remedy this drawback. As shown in figure 10, the two-point
Padé approximant can indeed generate highly accurate numerical results in all ranges.

The method developed in the current paper can be adapted to consider other SSIPs with
Rn 	= 0 for some n � 2. In fact, we have verified that the one-point Padé approximant works
equally well for such SSIPs (not shown in the current paper). However, due to the fact that the
asymptotic expansion for the superpotential of these SSIPs is, to our knowledge, unavailable,
we cannot construct the two-point Padé approximant for them. Currently we are studying
the possibility of expanding W(x) about x = ∞ for these potentials and will report relevant
progress in due course.

Lastly, as mentioned in section 1, the superpotential of SSSIPs can be used to construct the
multi-soliton solution of the KdV equation (see, e.g., [13–18]). We expect our finding reported
here can be applied in tandem with the theory of inverse scattering to generate time-dependent
multi-soliton solutions of the KdV equation, which is also our next goal of endeavor.
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